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Axisymmetric spreading of a viscous liquid between parallel planes is studied 
under conditions of frontal polymerization in the flow. Conditions required 
for existence of steady-state regimes are determined, together with their num- 
ber, properties, and stability. Analytical expressions are obtained for the 
critical parameter values at which steady-state regimes disappear or lose 
stability. An estimate of maximum reactor output is also obtained. 

i. Introduction. Frontal polymerization within a flow is one of the most promi~ing 
methods of polymer production, although the possibilities of realizing this process in tube 
reactors are limited due to adhesion of viscous reaction products to the tube walls, devel- 
opment of jet flows, and reactor breakdowns [i]. Therefore, it is of interest to study re- 
actors of other types, in particular, cylindrical and spherical ones, in which one can ex- 
pect wall effects to be less significant. Cylindrical reactors have been examined in a 
number of studies [2-5], although hydrodynamic effects were not considered. The present 
study will demonstrate that consideration of hydrodynamic effects limits the parameter 
range over which stable steady-state regimes can be realized. 

2. Formulation of Problem.. We will study axisymmetric flow of a viscous liquid in a 
cylindrical reactor with attachment conditions on the faces. The cylindrical reactor model 
which will be considered consists of two coaxial cylinders bounded by parallel planes (the 
reactor end plates). With internal supply liquid is fed into the reactor through the inner 
cylinder (radius r 0) and removed through the outer one (radius rl). Correspondingly, with 
external supply liquid is fed through the outer cylinder and extracted through the inter 
one. The subscripts 0 and i below will refer to values on the inner and outer surfaces. 

The solution of the equations of motion of the viscous liquid and the continuity equa- 
tion, written in cylindrical coordinates r, ~ , z (where z is the coordinate along the cylin- 
der axis) will be sought in the form V r = Vr(r, z, t), V~ = 0, 8Vr/~q~ = 0, with the assump- 
tion V z << V r, i.e., a flow close to radial will be considered. This is physically juntifi- 
able in the case where the velocity component V z is equal to zero on the inner and outer 
reactor surfaces, which corresponded to experimental conditions. The validity of the as- 
sumption V z << V r can easily be demonstrated for the case of low flow velocities, where the 
quadratic terms of the motion equation may be neglected, and for high velocities, where the 
quadratic terms become dominant and the solution depends only weakly on the pressure head 
over the radius. We will note that smallness of V z permits us to assume that the pressure 
is practically independent of z, while the pressure head between the inner and outer sir- 
faces is a constant, which will be assumed known (as is realized in practice). 

With these assumptions, after integrating the continuity equation over r we obtain 

= - - 1  f(z, O. (1) 
r 

We will solve the equation of motion for the velocity component Vr, using Eq. (i): 

a--i - + v "  + v :  az m ) + �9 (2) 
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Fig. 2. Maximum flow velocity vs reactor semi- 
height (a) and values thereof (b) for various c 
(a = 46.05-10 -4 m2/sec, b = 4999.5 m-2): a) i - 
c = 20-10 -6 m2/sec=; 2- 10.10-6; 3- 6.10-6; 4- 
4.10-6; 5- 2"10-6; 6- 10-6; 7- 0; 8--2.10-6; 
9--4-10-6; i0--6.10-6; ii- 8-10-6; 12--i0. 
10-6; b) i, 2- c = 6-10-6; i- hi-(d); 2- hl +. 
(d); 3, 4, 5- c =-6.10-6; 3- h2-(d) ; 4- h2 +. 
(d); 5- hi-(d); 6, 7- c = 0; 6- hi-(d); 7- 
h1+(d), d, m2/sec; h, m. 

Here r 0 ~ r ~ r I, 0 ~ z ~ 2h. We will consider the boundary conditions V r z=0 = VrIz=2h = 
0. For solutions symmetric about the plane z = h, the boundary conditions will be specified 
in the form Vrlz= 0 = 0, 8Vr/Szlz= h = 0. 

After integrating Eq. (2) over r from r 0 to r I and substitution in Eq. (i), dropping 
small quantities, we obtain an equation for the function f(z, t): 

I 
f~ = - -  (a f=  + bf" + c). 

In rl (3) 
ro 

Here we use the notation: a=~in r!L, b= ~l ( 1 l )  
ro 2 r~ d ' 

known pressure head, ft = 8f/St, fzz = a=f/az=. 

3. Steady-State Case. In the steady state the function f satisfies the equation 

af= § bf ~ + c =  0 

on the section 0 g z g 2h and boundary conditions 

c - ~  - -  A p l p ,  5 p  = p l - -  po i s  the  

(4) 

f (o) = f (2h) = O. ( 5 )  

Equation (4) can be solved in quadratures, although it will be convenient to first find the 
qualitative characteristics of the solutions. To do this we reduce the equation to a system 
of two first order equations 
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1 
h - -  ~ ' ,  ~ = - -  - -  (W ~ + 4 .  ( 6 )  a 

Figure 1 shows the qualitative behavior of trajectories in (6). The solutions of Eq. 
(4) with boundary conditions (5) obviously correspond to trajectory arcs beginning and end- 
ing on the ordinate axis. Therefore, in the case c > 0 (Fig. la) f(z) -> 0 for all z, i.e., 
outward flow is always realized. In this case f(z) is symmetric about z = h. 

For the case c < 0 (Fig. ib) the solutions may be positive (for 0 < z < 2h), negative, 
or sign-changing. If for the parameters we specify the values [+= max f(z) and [- mi~ [(z) 

O<z<2A 0 < ;  <2h 

then, as can easily be seen, independent of the reactor height position solutions (i.~., 
outward flow) exist at f+ _> fl, negative ones (i.e., flow inward) at f- > f2 = -v/-c/b, 
and sign-changing ones at fl ~ f+ < f3, f- > fz. The positive and negative solutions are 
symmetric about z = h, while the sign-changing ones may be either symmetric or antisynmet- 
ric. 

We will note that for an infinite reactor (-~ _< z <_ +~) in the case c > O, as will be 
made clear below, finite steady-state solutions do not exist. For the case c < 0 sucl solu- 
tions may be of three types: constant over z (f(z) - _+/-c/b), periodic over z (fl < ?+ < 
fs, f- > f2), and a sign-changing solution for which f+ = f3, f(+~) = f2- 

Neither is it difficult to find steady-state flow regimes in a semiinfinite reactor 
(0 <_ z ~+~). 

It can be shown that the constant sign solution of Eq. (4) with conditions f(O) :: O, 
fz(h) = 0 can be specified in the form 

i(z) d'~ 

o - --3 r d3)+ ~ (T- d) j 

where d = f(h) (if d ~ 0, then d = f-+). The sign-changing solutions can be "compiled' 
from constant sign solutions. The function f(z) can be found from the implicit expre.'sion 
of Eq. (7) numerically, and explicit estimates obtained. 

Figure 2a shows the dependence of d on h for various values of c, obtained by ntmerical 
solution of Eq. (7). These curves allow us to determine some principles describing tte solu- 
tion behavior. For the case Ap < 0 (curves i-6) for each value of pressure head and quanti- 
ty h < her (i) two positive solutions of Eq. (4) exist, which correspond to different ~axi- 
mum velocity values. For h >hcr (I) steady-state solutions do not exist, i.e., production 
of a given pressure head in a reactor of that height is impossible. 

Two solutions of Eq. (4) also exist for Ap = 0 for each h, one of which is positive 
(curve 7), and other other, identically equal to zero. 

For Ap > 0 positive, negative, and sign-changing solutions may exist. The negative 
solution (i.e., flow inward) exists for any reactor height and d § as h § ~ (curves 
8-12 in region d < 0). Positive solutions (i.e., flow outward) exist only for h <hcr (2) 
(the single-valued branches of curves 8-12 in the region d > 0). At h =hcr (2) (f+ = fl) 
the positive solution transforms into three sign-changing solutions (weak degeneration), 
which exist for all h > hcr(2). As h + ~ we have f+ § f~, f- + f2. Moreover, at h = 
nhcr(2), n = I, 2, .... for each n value there appear another three-sign-changing solu!-ions 
(strong degeneration), for which the intervals of positive and negative values of the :[unc- 
tion f(z) alternate, their number increasing with increase in n (number of positive in-er- 
vals equal to n). We note here some analogy to the flow of a viscous liquid in a diffusor 
[ 6 ] .  

As was noted above, the representation of Eq. (7) can be used to obtain concrete esti- 
mates. To do this, it is obviously necessary only to evaluate the integrand, since the in- 
tegral of Eq. (7) can be reduced to tabular form. In particular, for Ap < 0 we have the 
following estimate of the quantity h as a function of d (Fig. 2b, curves i, 2): 

hT (d) < h < ht (d), 

where 
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_ /  3a 
hF(d) = I /  

4bd I' 

h? (d)= - / V -  

F o r  Ap > 0 f o r  i n w a r d  f l o w s  (d  < O) 

(Fig. 2b, curves 3, 4), where 

/ - -  3a 
h7 (d) = F 4bd 

3 c - - b d  2 
- -  arCCOS 

3 (c + bd ~) ' 

/ 
h~- 

a 

(d) = - -  I /  

1 /  2bd 

a c -- bd 2 
- -  arccos bd ~ . 
2bd c -H 

h7 (d) < 2h < h + (d) 

-- In 3 (c -t- bd 2) 

3c -- bd z -t- 2d ]/-- 20 (3c -6 bd2) 

c -}- bd z 
In 

c - -  bd z -I- 2d V bc 

For Ap > 0 for outward flow (d > 0) h > h i - (d) (Fig. 2b, curve 5). We note that the func- 
tions hi-(d) and h2-(d) give a quite precise estimate and can be used as approximate values. 

It can easily be proved that at d >> v%/b 

h+ 

while at d << /c/b 

a 

2bd ' 

+ (a) 2a--Ld, (8) 
C 

whence we can obtain the approximate value of hcr (1) 

corresponding to the d value: 

/l (1) ~ 1 /  ~a 
A, I /  ] / ~  

:: T T 

We r e c a l l  t h a t  f o r  Ap < 0 f l o w  o u t w a r d  e x i s t s  o n l y  a t  h < h c r ( ! ) ,  w h i c h  i m p o s e s  d e f i n i t e  
limitations on reactor geometric characteristics. We will also note that of the two 
branches of the d(h) curve the stable solutions correspond to the lower branch (see Sec. 
3), so that independent of reactor height the maximum stable flow velocity is always bound- 
ed above (d ~ dcr(1)). The quantity d may then become comparable to dcr (1) even for rela- 
tively slow viscous liquid flows, so that the asymptote of Eq. (8), (or, what is the same, 
neglect of quadratic terms in the motion equations) may not always be used. 

4. Nonsteady Case. If the initial velocity distribution is independent of angle and 
inversely proportional to radius, i.e., Vr ~ = (i/r)f~ (V~ ~ = Vz ~ = 0), this will also be 

true for the velocity distribution at any point in time. This means that the function V r 
may be written in the form of Eq. (i), where f(z, t) is a solution of Eq. (3) with boundary 
conditions (5) and initial condition f(z, 0) = f~ Methods for study of the solutions 
of such boundary problems are well developed and are based on the positiveness theorems 
and comparison theorems for linear and quasilinear parabolic equations. 

We will note that the steady-state solutions of the boundary problem under considera- 
tion which are not identically equal to zero are obviously nonmonotonic. It is known (see 
[7]) that such solutions are unstable, if they possess two or more extrema. If there is 
but one extremum then the steady-state solution may be either stable or unstable. Simple 
analysis of the behavior of the solutions of Eq. (3) using the comparison theorem shows 
that in the case Ap < 0 the steady-state solutions corresponding to the upper branch of d(h) 
(Fig. 2a) are unstable, while those corresponding to the lower branche are stable. Similarly, 
for the case Ap > 0 those solutions with negative d are stable (flow inward), while those 
with positive d (flow outward) and those which change sign are unstable. 
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Fig. 3. Reactor pressure head- 
output characteristics for var- 
ious h values: i) h = 0.1 m; 
2) 0.2; 3) 0.25; 4) 0.3; 5) 
0 . 3 5 ;  6) 0 . 4 ;  7) ~; a = 46 .05"  
10 -4 m 2 / s e c ,  b = 4999 .5  m-2; 
p = 10 a kg/m a, Ap, Pa; Qpl ,  m2/ 
sec. 

These conclusions were confirmed by direct munerical solution of the boundary p~oblem. 
If for the initial condition a disturbed unstable steady-state solution was chosen, then 
for negative disturbances a stable steady state was established rapidly, while for pcsitive 
disturbances the solution increased without limit over a finite time, corresponding to un- 
limited growth in flow velocity. However, it should be understood that at sufficient high 
flow velocities the formulation used herein becomes incorrect (in particular, one cannot 
specify Ap as a parameter). This is also true of the case Ap < 0, h >hcr (1), where a 
steady-state solution of the form considered does not exist, and the solution of the non- 
steady problem increases without limit for any initial condition. 

To conclude this facet of the problem, we will briefly consider the question of stabil- 
ity of steady-state solutions in the case of an infinite reactor (-~ <_ z -< +~) for Ap > 0. 
In this case the only stable solution is f(z) -= f2, while all remaining steady-state solu- 
tions are unstable. Of definite interest here is the process of transition of the solution 
from constant positive to constant negative; this transition is accomplished due to the 

propagation of two waves moving in opposite directions with velocity 2v/2a#i-bc (see [8, 9]). 

5. Ca!culatio n of Reactor Output. The volume output of the mixture through the cylin- 
drical surface r = const can be expressed in terms of the function f(z) as 

2h 

Q = 2 ~  [ f ( z )  dz  ( 9 )  
.I 
0 

We w i l l  c h o o s e  as t h e  c h a r a c t e r i s t i c  o f  r e a c t o r  p r o d u c t i v i t y  t h e  w e i g h t - a v e r a g e d  " p l a n a r  
o u t p u t "  Qpl = Q/2h.  Then, u s i n g  Eq. (9)  and t h e  n u m e r i c a l  s o l u t i o n  o f  Eq. ( 7 ) ,  we can con-  
s t r u c t  r e a c t o r  p r e s s u r e  h e a d - o u t p u t  c h a r a c t e r i s t i c s  ( s e e  F i g .  3 ) .  I n  t h e  c a s e  o f  a r e a c t o r  
o f  i n f i n i t e  h e i g h t ,  t h e  h e a d - o u t p u t  c h a r a c t e r i s t i c  has  t h e  form 

Ap -- pb o 

4~z % 1 '  

w h i l e  I f ( z ) l  = r  I n  a r e a c t o r  o f  f i n i t e  h e i g h t ,  a l l  s t e a d y - s t a t e  f l o w s  d i r e c t e c  i n -  
ward a r e  s t a b l e .  I n  t h i s  c a s e  Ap > 0 and I f ( h )  I < ~/-c /b .  We w i l l  assume t h a t  t h e  h e i g h t  
2h i s  s u f f i c i e n t l y  l a r g e  t h a t  e v e r y w h e r e  bu t  in  a na r row  b o u n d a r y  l a y e r  we may t a k e  f ( z )  = 
-V~-c/b, t h e n  

Qp1 ~ - -  2n ],,/Z c/13. 

I f  in  a d d i t i o n  r l  >> r 0 ,  t h e n  b ~ 1 / 2 r 0 2  and 

Qpl - -  ~ - -  2~ro ] /  2Ap/p 

Th i s  a p p r o x i m a t i o n  i s  v a l i d  f o r  h >> hc r  ( a )  = ,/2a/-./-k-~c. For  f ( h )  > 0 s o l u t i o n s  w i t h  Ap < 0 

and f ( h ) < d m ~ : |  , a r e  s t a b l e ,  i . e . ,  t h o s e  d e s c r i b e d  by t h e  q u a d r a t i c  e x p r e s s i o n s :  

f ( h )  c h2 and f ( z )  c 7 = §  ch = - -  - -  _ - -  z. ( l o )  
2a 2a a 

In this case Qpl is defined as 
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_ _  ~ _ _  n a p  h~ ' 

Qpl 3pv In r~  
fo 

and the volume flow rate 

Q ~ 2 nAp ht  

3 ,ovln r---L 
fo 

Since h is is bounded above by the value hcr (I) = s the maximum volume flow rate of 
mixture which can be realized in the reactor given the condition that the parameters a, b, 
c are specified and the flow is stable, will be: 

2 n2, 5 c0, 25 a0, s 

Qm~ ~ 3 b~ 2s 

6. C o n c l u s i o n .  Thus,  s t e a d y - s t a t e  f l o w  reg imes  o f  a v i s c o u s  l i q u i d  i n  a c y l i n d r i c a l  
reactor and their stability have been studied by approximate analytical and numerical meth- 
ods. The dependence of maximum medium motion velocity upon reactor dimensions and pressure 
head-output characteristics have been constructed. Estimates of maximum reactor output have 
been presented. The results obtained permit determination of optimum process characteris- 
tics to accomplish frontal polymerization in cylindrical type reactors. 

NOTATION 

h, reactor half-height; p, pressure; Ap, pressure head between outer and inner reactor 
surfaces; Q, mixture volume flow rate; Qpl, "planar" flow rate averaged over height; r, ~, 
z, cylindrical coordinates; r0, rl, radii of inner and outer cylinders bounding reactor; 
t, time; Vr, V~, Vz, components of flow velocity vector; ~, kinematic viscosity coefficient; 
p, density; a = ~ in (rl/r0); b = (rl 2 - r02)/2r12r02; c = --Ap/p; d = f(h); f(z, t) = rV r. 
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